Session 2B: Intelligent Modeling, Simulation, and System Analysis

Modeling, Simulation, and Control of a Soft Quadruped Robot

Qinglei Ji (PhD)

Solution Engineer – Controls & AI

Volvo Cars Cooperation, Gothenburg

The research in this presentation is performed at KTH Royal Institute of Technology, Sweden.

2024/10/20

Quadruped Robots

Enhanced mobility and adaptability to complex environment

Spot, Boston Dynamics

3D printed Robot

https://www.youtube.com/watch?v=wlkCQXHEgjA https://3dprint.com/270090/open-source-quadruped-robot-with-3d-printed-components/

Qinglei Ji | www.qinglei.tech

Soft Quadruped Robots

Systems built from highly compliant materials to provide flexibility and adaptability to the workspace.

- Continuous movements
- Smooth motions
- Safe interactions
- Need for fast, precise and light-weight actuators

Multi-gait robot

3D printed Soft Robot

Shepherd et al.,."Multigait soft robot." Proceedings of the national academy of sciences 108, no. 51 (2011): 20400-20403.

Ishida at al., "Morphing structure for changing hydrodynamic characteristics of a soft underwater walking robot." IEEE Robotics and Automation Letters 4, no. 4 (2019): 4163-4169.

Qinglei Ji | www.qinglei.tech

Tendon-driven Continuum Actuator

Combines fast response and compliance

Rone, William S., and Pinhas Ben-Tzvi. "Mechanics modeling of multisegment rod-driven continuum robots." Journal of Mechanisms and Robotics 6, no. 4 (2014): 041006.

Soft Quadruped Robot at KTH

Quadruped robot enabled by tendon-driven soft actuators

- Complex to model and control
- Slow simulation

Muralidharan ST, Zhu R, Ji Q, Feng L, Wang XV, Wang L. A soft quadruped robot enabled by continuum actuators. In 2021 IEEE 17th International Conference on Automation Science and Engineering (CASE) 2021 Aug 23 (pp. 834-840). IEEE.

Control Architecture

- Control: Mechanism or algorithm for ensuring the system behaves in a desired manner.
- Plant: System or process being controlled (mechanical, electrical, biological or economic systems, etc.).
- Observer: Measure or estimate the internal state of the plant.

Typical feedback architecture in controls engineering.

Control Architecture

Sense-Plan-Act architecture in robotic and autonomous driving systems.

Outline

- ✓ Background
- ✓ Modeling
- ✓ Simulation
- ✓ Control
- ✔ Conclusion

Inverse Kinematics Model

Inverse kinematics model for an **incompressible** tendon-driven soft actuator

Hsiao K, Mochiyama H. A wire-driven continuum manipulator model without assuming shape curvature constancy. In2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2017 Sep 24 (pp. 436-443). IEEE.

Muralidharan ST, Zhu R, Ji Q, Feng L, Wang XV, Wang L. A soft quadruped robot enabled by continuum actuators. In2021 IEEE 17th International Conference on Automation Science and Engineering (CASE) 2021 Aug 23 (pp. 834-840). IEEE.

Qinglei Ji | www.qinglei.tech

Inverse Kinematics Model

Proposed model for a **compressible** tendon-driven soft actuator

$$[x_{\mathrm{A}}, x_{\mathrm{B}}, x_{\mathrm{C}}]^{T} = g\left(\begin{bmatrix} \alpha_{\mathrm{b}} \\ \alpha_{\mathrm{r}} \\ z_{\mathrm{l}} \end{bmatrix}\right) = f\left(\begin{bmatrix} \alpha_{\mathrm{b}} \\ \alpha_{\mathrm{r}} \end{bmatrix}\right) + z_{\mathrm{l}} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Ji, *Qinglei*, *et al.* "Omnidirectional walking of a quadruped robot enabled by compressible tendon-driven soft actuators." 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2022.

Inverse Kinematics Model

Model validation

Outline

- ✓ Background
- ✓ Modeling
- ✓ Simulation
- ✔ Control
- ✔ Conclusion

Simulation Environment

- Simscape Multibody toolbox in MATLAB Simulink (support for flexible/soft materials)
- Integrated modeling and simulation for machine learning, controller, and physical plant

Complete body, joint, and force types for modeling soft robots.

https://se.mathworks.com/products/simscape-multibody.html

EQ10 ই FIE

Spring and

System Architecture

Overview of the quadruped robot's main subsystems.

Ji, Qinglei, et al. "Synthesizing the optimal gait of a quadruped robot with soft actuators using deep reinforcement learning." Robotics and Computer-Integrated Manufacturing 78 (2022): 102382.

Qinglei Ji | www.qinglei.tech

Motor Parameter Characterization

Identifying motor parameters with known load.

Table 1	
Identified servo motor parameters.	
Parameters	Value
Stall torque (cm * kg)	11.2
Time traveling 60° (s)	0.2
Nominal voltage (V)	6
Rotational range (rad)	$[-\pi/2,\pi/2]$

Motor Model

Servo motor with angle control.

Motor Model

Connect to spool with force feedback.

Soft Material Model

Choices for modeling soft material

- Elastic material modelling
- Lumped parameter method with hard material

https://se.mathworks.com/content/dam/mathworks/tag-team/Objects/s/Modeling-Flexible-Bodies-Simscape-Multibody-171122.pdf

Qinglei Ji | www.qinglei.tech

Tendon Modeling

Choices for modelling tendon mechanism

- Equally distributed force pairs
- Confined cable by pully pairs
- Varying numbers of pulleys

Varying numbers of pulleys for trade-off between accuracy and simulation efficiency.

Soft Actuator Model in Simulink

Soft material sections.

Soft Actuator Model in Simulink

Rigid material connected by lumped joints.

Result

Precision *vs* simulation time

Foot-ground Contact Model

Spatial contact force block in Simscape to model the friction between foot and ground.

Inclined plan experiment to acquire the friction coefficient.

Spatial

Contact Force

Simulation Demonstration

Outline

- ✓ Background
- ✓ Modeling
- ✓ Simulation
- ✓ Control
- ✔ Conclusion

Robot Gait Development - Trot Gait

Assumption: Actuator rotational directional refers to the walking direction

Ji, *Qinglei*, *et al.* "Omnidirectional walking of a quadruped robot enabled by compressible tendon-driven soft actuators." 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2022.

Influences of Input Parameters

Closed-loop Direction and Speed Control

Implementation

Omnidirectional walking of a quadruped robot enabled by compressible tendon-driven soft actuators

Qinglei Ji^{1,2}, Shuo Fu², Lei Feng², Georgios Andrikopoulos², Xi Vincent Wang¹ and Lihui Wang¹

1 Department of Production Engineering, KTH Royal Institute of Technology, Stockholm 10044, Sweden 2 Department of Machine Design, KTH Royal Institute of Technology, Stockholm 10044, Sweden

Excellence in Production Research

Reinforcement Learning

Learn with reward or penalty feedback.

Difference in design philosophy of reward in RL vs cost in optimal control:

- RL: Reward shaping is an art, often requiring intuition
- Optimal Control: Cost functions often derived from physical principles

Reinforcement learning

Classifications of AI techniques

https://www.youtube.com/watch?v=5p248yoa3oE&ab_channel=StanfordOnline https://www.kdnuggets.com/2022/05/reinforcement-learning-newbies.html

Gait Learning for Soft Quadruped Robot

Soft Actor Critic (SAC) method

$$\pi^* = \arg\max_{\pi} \sum_{t} \mathbb{E}_{(\mathbf{s}_t, \mathbf{a}_t) \sim \rho_{\pi}} \left[r(\mathbf{s}_t, \mathbf{a}_t) + \alpha \mathcal{H}(\pi(\cdot | \mathbf{s}_t)) \right]$$

Haarnoja T, Zhou A, Hartikainen K, Tucker G, Ha S, Tan J, Kumar V, Zhu H, Gupta A, Abbeel P, Levine S. Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905. 2018 Dec 13.

Qinglei Ji | www.qinglei.tech

Gait Learning for Soft Quadruped Robot

Actor network

Gait Learning for Soft Quadruped Robot

Implementation

Sim2Real gap

Solutions

- Add random noises
- B Change env. params.

Model-Based Reinforcement Learning

Training via simulation or real world is expensive

Gait control policy generation framework

Niu, Xuezhi, Kaige Tan, and Lei Feng. "Optimal Gait Control for a Tendon-driven Soft Quadruped Robot by Model-based Reinforcement Learning." arXiv preprint arXiv:2406.07069 (2024).

Surrogate Model

- Predict next state with current state and actions
- Precision is decreased when prediction is iterated for long term prediction
- DNN with three hidden layers (64, 128, 64)
- Supervised learning
- Long-term prediction

Prediction accuracy decreases for long term.

MBRL + Post-training

Post-Training for Improving Control Quality

The training results in 0.2 m/s reference speed. (a) Cumulative reward with training episodes. Variations in (b) entropy and (c) temperature during the training process.

Implementation

Great improvement on the training speed: 11 vs 48 hours

Similar stable walking speed with the identical environment

Bayesian optimization with parametric model

Parametric model (CPG) from expert knowledge

Tan, Kaige, et al. "Optimal Gait Design for a Soft Quadruped Robot via Multi-fidelity Bayesian Optimization." arXiv preprint arXiv:2406.07065 (2024). Qinglei Ji | www.qinglei.tech

Edge Computing for Online Learning and Control

Offload computing to cloud

Training iteration demos

Initial gait (0.046m/s) Intermidiate gait during training (0.143m/s)

Optimal converged gait (0.215m/s)

Final Remarks

- Unified simulation, control, and learning environment.
- Trade-off between model accuracy *vs* simplified simulation for time-efficient learning.
- Learn from simulation and real world to overcome Sim2Real gap.
- Offload computing to cloud for intensive online learning tasks.

